

Current pain synthesis methods for patient robots are not automatic

Dental Robot Simulator

©2025 tmsuk Pedia_roid

General Patient Robot Simulator

Robot HAL® S3201

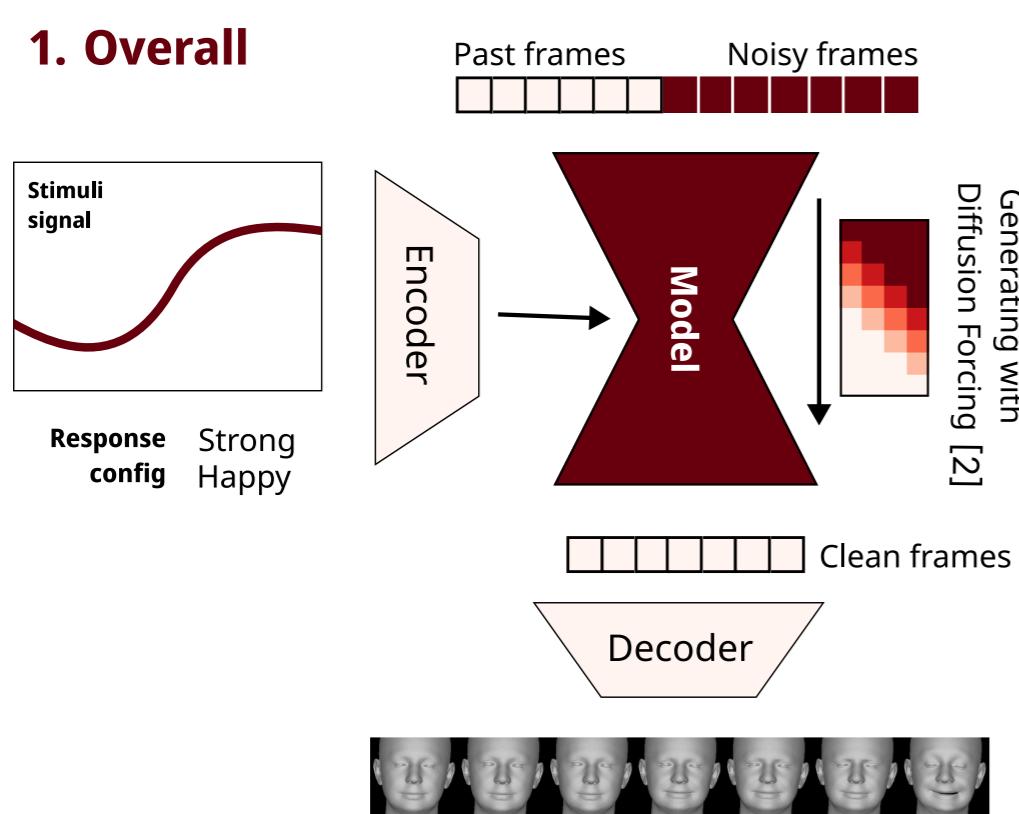
The current patient robots in the market have limited and static emotional expressions.

	Classify	Synthesize	Rule-based	Learning-based
Moosaei et al (2017)	✓	✓		
Huang et al (2019)	✓			✓
Haque et al (2018)	✓			✓
Lee et al (2021)	✓	✓		
This method	★		★	★

To the best of our knowledge, we are the first to tackle pain synthesis with a learning-based approach, which aims to make more realistic patient robots.

Autoregressively and Continuously Generate Reaction Sequences

1. Overall



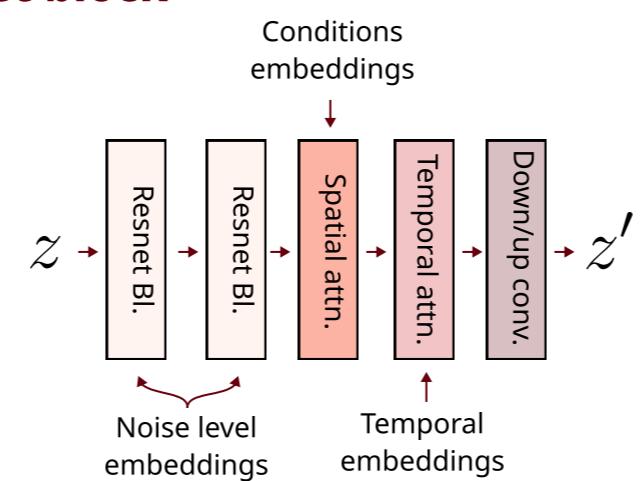
We train PainDiffusion on the Biobid Heatpain Database [1] with Elucidated Diffusion objective [3].

$$\mathbb{E}_{y \sim p_{\text{data}}, n \sim \mathcal{N}(0, \sigma^2)} \left[\|y_{\text{pred}} - y_{\text{target}}\|_2^2 \right]$$

$$y_{\text{pred}} = F_{\theta} \left(c_{\text{in}}(\sigma) \cdot (y + n), c_{\text{noise}}(\sigma) \right)$$

$$y_{\text{target}} = \frac{1}{c_{\text{out}}(\sigma)} \left(y - c_{\text{skip}}(\sigma) \cdot (y + n) \right)$$

2. Unet block

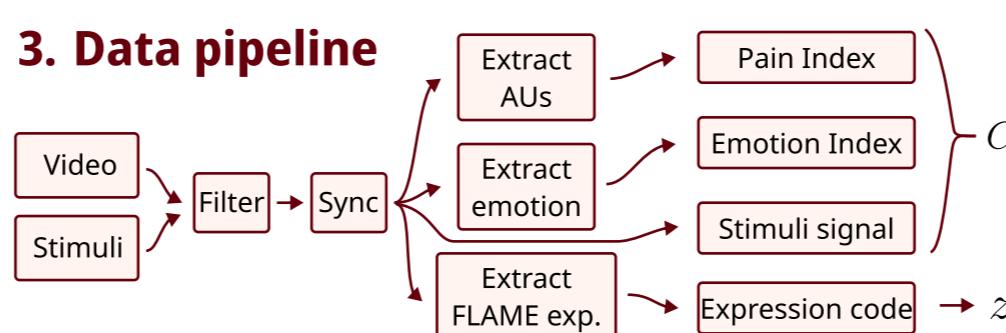


Both noise level and temporal embeddings are from sinusoidal positional encoding to add *positional information in both noise dimension and time dimension*.

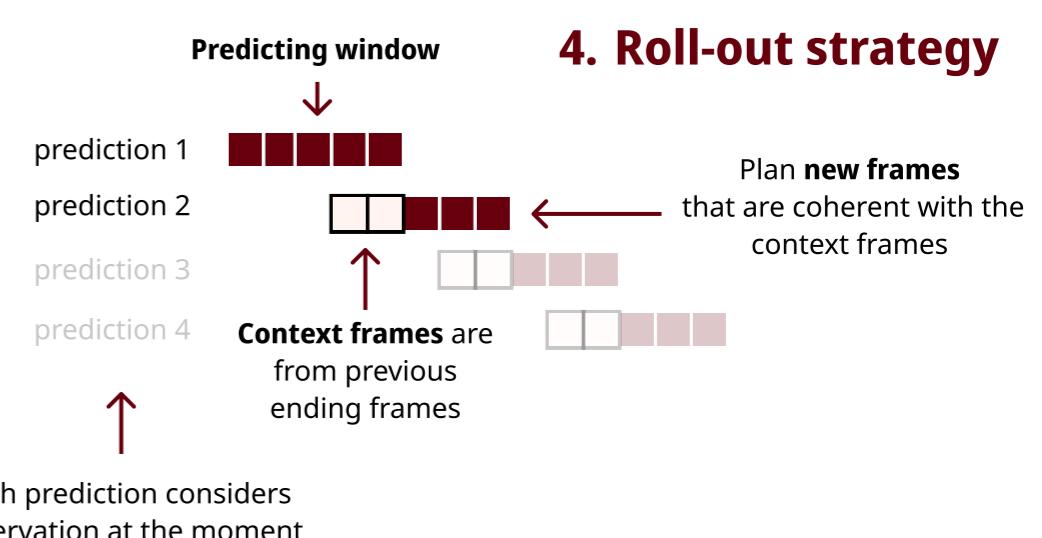
To flexibly tune the influence of each controlling signal we use a fine-grain version of classifier-free guidance in inference time.

$$\hat{z} = \left(1 + \sum_{c \in C} \lambda_c \right) \cdot F_{\theta}(z, t, C) - \sum_{c \in C} \lambda_c \cdot F_{\theta}(z, t, C|_{c=0})$$

3. Data pipeline

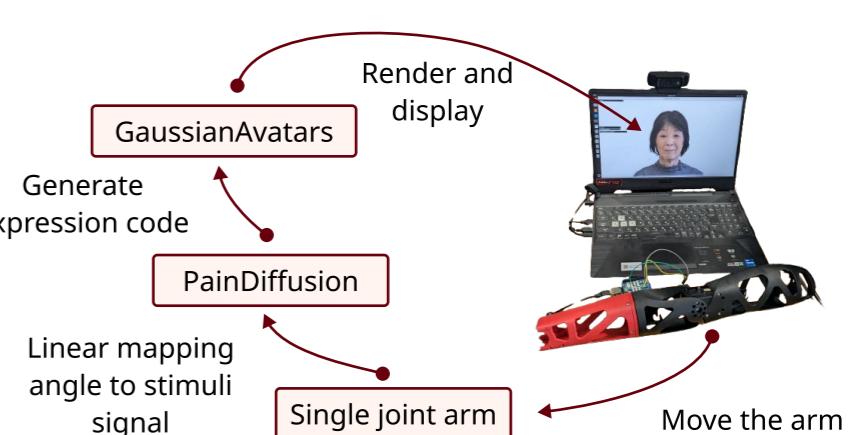


4. Roll-out strategy



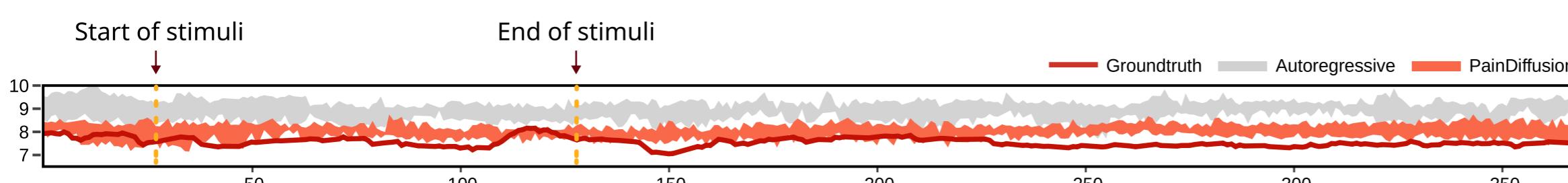
The context frames are added with *little noise level* to give more *freedom in predicting the future frames* while the future frames start from totally noise. The ratio of context frames and the length of the predicting window will affect how fast the model plan new frames.

5. Elbow range of motion exercise

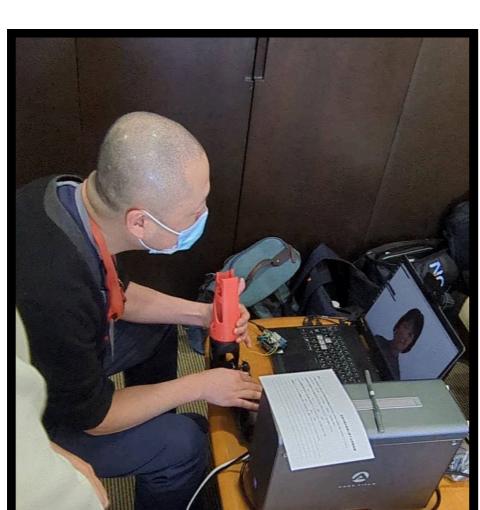


PainDiffusion outperforms the autoregressive discretization method

We run 5 predictions to create the range of graph, the pain index signal from the ground truth recording falls within the predicted range of PainDiffusion while autoregressive baseline is higher.

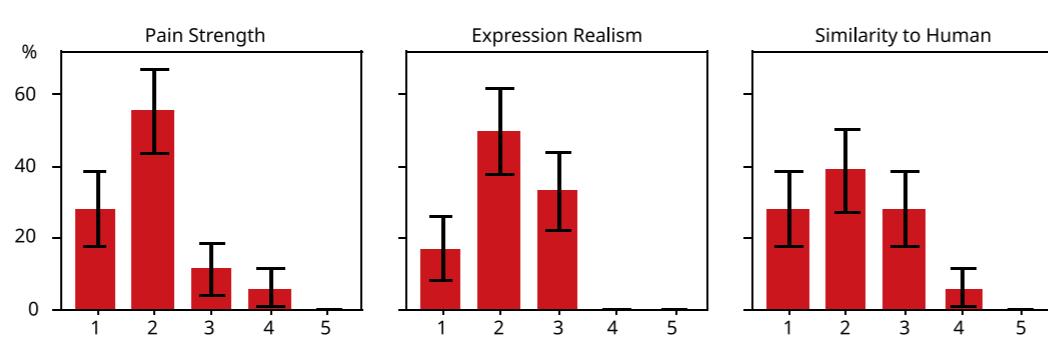


Experts chose PainDiffusion 31% of the time in the video preference test

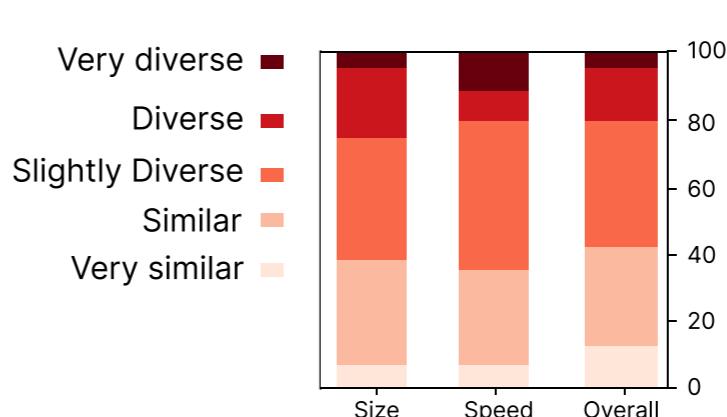
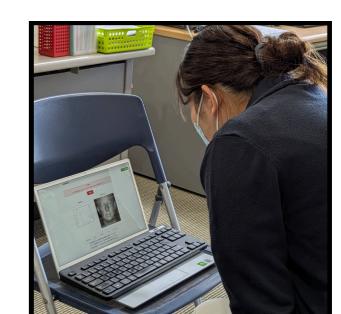


Expressions against stimuli signal is quite real

We asked clinicians to practice rehabilitation elbow range of motion exercise on a single joint arm then rate the expression of the virtual avatar.

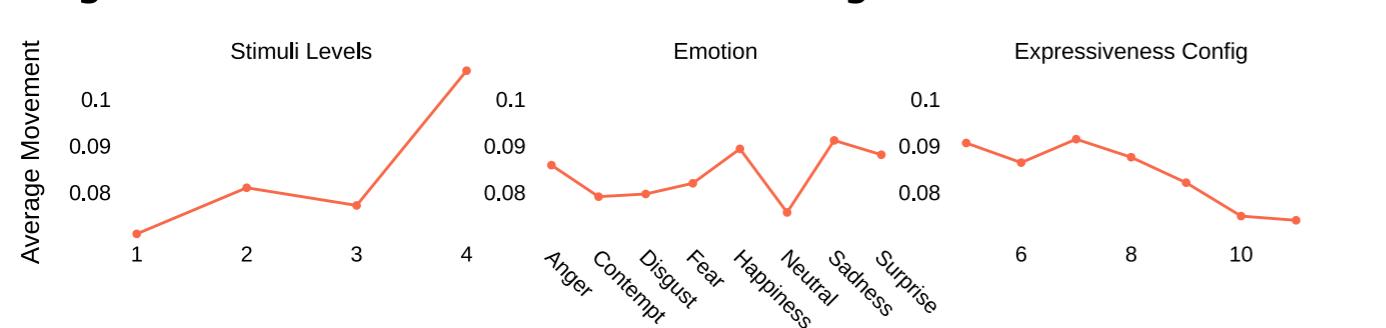


Diversity of motion rated by clinicians

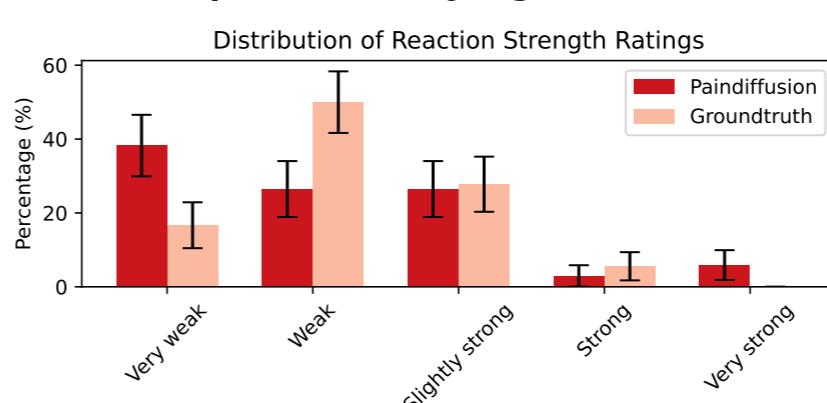


Preference test is between PainDiffusion and groundtruth.

Magnitude of avatar movement across configurations



Real examples are also judged as weak



Further insights from clinicians

1. A *calibrated baseline* is needed for better assessing the expression.
2. Cultural elements (e.g. patient record) are necessary to make a more realistic pain expression model.