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Current pain synthesis methods for patient robots are not automatic
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- To the best of our knowledge, we are the first to tackle pain synthesis with a
The current patient robots in the market have limited and static emotional expressions. learning-based approach, which aims to make more realistic patient robots.

Autoregressively and Continuously Generate Reaction Sequences
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Both noise level and temporal embeddings are from
sinusoidal positional encoding to add positional information
Decoder in both noise dimension and time dimension.

To flexibly tune the influence of each controlling signal
we use a fine-grain version of classifier-free guidance in
inference time.
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Predicting window 4. Roll-out strategy
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The context frames are added with little noise level to give more freedom in
predicting the future frames while the future frames start from totally noise. The
ratio of context frames and the length of the predicting window will affect how
fast the model plan new frames.
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PainDiffusion outperforms the autoregressive discretization method

We run 5 predictions to create the range of graph, the pain index signal from the ground truth recording
falls within the predicted range of PainDiffusion while autoregressive baseline is higher.
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